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Abstract

In a paper of Nielson et al. it is shown, using the linear approximation, that it might be possible to create a pair of RF-pulses,
which, after summation of the unrephased signals achieve a specified transverse magnetization. Such pulses, designed using the lin-
ear approximation, show rather poor slice selectivity. Using the inverse scattering transform formalism we give an algorithm to
exactly achieve a specified ‘‘summed’’ transverse magnetization profile. Indeed for a constant phase transverse profile, our algorithm
produces infinitely many solutions.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

When imaging very short T2 species, it is useful to be
able to begin acquiring a signal as soon as possible after
the RF-excitation. In particular, one would like to re-
duce the length of the excitation and rephasing time,
essentially to 0. The possibility of using two ‘‘half
pulses’’ is explored by Nielson et al. in [4]. They consider
the following question: suppose we are given a target
transverse magnetization profile ðms

x þ ims
yÞðf Þ, here f is

the offset frequency. Can we find a pair of self refocused,
pulses q1 (t) and q2 (t) with magnetization profiles,
ðm1

x þ im1
yÞðf Þ, ðm2

x þ im2
yÞðf Þ, so that

ðms
x þ ims

yÞðf Þ ¼ ðm1
x þ im1

yÞðf Þ þ ðm2
x þ im2

yÞð�f Þ
h i

?

ð1Þ
By ‘‘self refocused’’ we mean that, at the conclusion

of the RF-pulse, the magnetizations achieve the stated
transverse profiles, in this case ðm1

x þ im1
yÞðf Þ and
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ðm2
x þ im2

yÞðf Þ, respectively, without any need for rephas-
ing. We call the pair, (q1 (t), q2 (t)), a pair of half pulses.
In this paper we normalize so that the magnetization
profile, m (f) = [mx (f),my (f),mz (f)], produced by a single

pulse, is a R3 valued function of length 1. The intuition
behind the usage of half pulses, which mostly comes
from the linear theory, is very well explained in the Niel-
son et al. paper.

The intent of this paper is to present an exact solution
to the design problem. This is the essentially mathemat-
ical question of finding the half pulse pairs whose trans-
verse profiles satisfy Eq. (1). We accomplish this by
rephrasing the half pulse design as an inverse scattering
problem. Using the formalism introduced in [2], this in-
verse scattering problem is solved.

A reason to use half pulses is that they can consider-
ably shorten the excitation part of a pulse sequence,
without sacrificing selectivity or increasing the band-
width. They are especially useful when imaging objects,
such as bone, which have a very short T2, see, for exam-
ple, Gatehouse and co-workers [7]. There are two rea-
sons for this: (1) They do not require rephasing. (2) A
typical half pulse has a single large peak at the end,
and there is little transverse magnetization (which is
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subject to T2-relaxation) before this peak. For example,
each pulse in a reasonably selective 2 kHz half pulse pair
has a duration of about 2.5 ms. The comparable mini-
mum energy pulse has a duration of about 5 ms and re-
quires about 2.5 ms of rephasing. Comparing Figs. 1–3C
to Fig. 4C, where the pulses are played out with
T2 = 5 ms, we see that the profile produced by a mini-
mum energy pulse looses more than half its amplitude
whereas, the profiles produced by the half pulses are al-
most unaffected. Several other applications of half
pulses are described in Nielson et al., for example, in
MR angiography.
Fig. 1. The result of using the linear approximation to design a pair of
half pulses which sum to produce the maximum possible in-slice signal.
(A) Pulse designed using the linear approximation. (B) The summed
transverse magnetization produced by using the pulse in (A) as a half
pulse, with T2 =1. (C) The summed transverse magnetization
produced by using the pulse in (A) as a half pulse, with T2 = 5 ms.

Fig. 2. This shows the nonlinear half pulse used to obtain a maximum
summed profile. (A) An IST half pulse. (B) The summed transverse
magnetization produced by using the pulse in (A) with T2 = 1. (C)
The summed transverse magnetization produced by using the pulse in
(A) with T2 = 5 ms.
Due to the nonlinear dependence of the magnetiza-
tion profile on the pulse envelope, the problem of finding
a half pulse pair, (q1 (t),q2 (t)), given ðms

x þ ims
yÞðf Þ is

clearly nonlinear. The Nielson paper solves this problem
to first order, using the low flip angle connection be-
tween the Fourier transform of the pulse envelope,
and the transverse magnetization profile, see [6]. In the
natural time parameterization provided by the inverse
scattering formalism, a pulse is self refocused if it is sup-
ported in (�1, 0], see [2,8]. In this time parameteriza-
tion, the Fourier transforms of q1 (t) and q2 (t) would
therefore have analytic continuations to the upper half



Fig. 4. Plots (A and B) show the (unsummed) magnetization profiles
produced by two pulses designed using the IST method. (A) The
magnetization profile produced by the pulse in Fig. 2A. (B) The
magnetization profile produced by the pulse in Fig. 3A. (C)
The transverse magnetization produced by a minimum energy IST
pulse, with a rephasing time of 2.5 ms, and T2 = 5 ms. If T2 =1 the
in-slice transverse magnetization produced by this pulse has size 1.
This plot should be compared to Figs. 1–3C.

Fig. 3. This shows the nonlinear half pulse used to obtain a maximum
summed profile with a Blaschke factor included to reduce the out-of-
slice imaginary part. (A) The half pulse. (B) The summed transverse
magnetization produced by using the pulse in (A) with T2 =1. (C)
The summed transverse magnetization produced by using the pulse in
(A) with T2 = 5 ms.
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plane. The mathematical content of the Nielson paper is
contained in the following classical theorem:

Theorem 1. Let gðf Þ 2 L2ðRÞ, then there are unique

functions g1(f ), g2(f ) in L2ðRÞ such that g1(f ) and

g2(f ) have analytic extensions to the upper half plane and

g(f ) = g1(f ) + g2(�f ).

In the next section we rephrase the problem of finding
pairs of half pulses in the inverse scattering formalism
presented in [2]. We first give a simple closed form solu-
tion, provided the target magnetization is real. This is
the case of principal interest in applications. Like other
pulse synthesis problems, this problem has an infinite
dimensional space of solutions, which we produce. We
then give an algorithm to find the unique small energy
solution for sufficiently small, complex valued data. In
practice we have found that this algorithm works well,
even for fairly large data. The case of a nonreal summed
transverse profile is analyzed in Appendix B. In the final
section we give the half pulse pairs for several target
magnetizations.
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2. Half pulse synthesis as an inverse scattering problem

A pair of half pulses would be used in an MR-exper-
iment as follows (we assume here the possibility of
instantaneously switching the gradient fields): with the
slice select gradient turned on, the sample is first excited
using the profile q1 (t). At the conclusion of the excita-
tion, the slice select gradient is immediately turned off,
and the signal S1 (t) is acquired. Once the system has re-
turned to equilibrium, the slice select gradient is again
turned on, but with the polarity reversed. The sample is
excited using the profile q2 (t). At the conclusion of this
excitation the slice select gradient is again, immediately
turned off, and the signal S2 (t) is acquired. The goal
of half pulse design is to have the summed signal,
S (t) = S1 (t) + S2 (t), equal to the signal that would have
resulted if we had used a selective pulse with transverse
profile ðms

x þ ims
yÞðf Þ.

In fact we can do even better than we could have
done with a single excitation. With our normalization,
the transverse profile produced by a single pulse is re-
stricted to have norm less than 1. Because it is the result
of summing the signals from two such excitations, the
norm of the summed profile (in Eq. (1)) may be arbi-
trarily close to 2. For this reason we restrict the target
summed profile, ðms

x þ ims
yÞðf Þ, to be a function taking

values in the disk of radius 2, rather than the disk of ra-
dius 1, as would be the case for the design of a single
pulse. Using the half pulse technique one can also in-
crease the SNR by

ffiffiffi
2

p
: the summed signal has double

the usual amplitude, while the noise is uncorrelated be-
tween the two half pulse excitations. Beyond this in-
crease in SNR, the individual pulses q1 (t) and q2 (t)
have large effective bandwidths and this tends to de-
crease their durations. This is a great virtue when imag-
ing species with very short spin–spin relaxation rates. In
light of the linearity of the measurement process, it is
also clear that one can follow the excitations with phase,
or frequency encoding steps, and the statement about
the sum of the measured signals remains correct. An-
other way to achieve excitations that require no rephas-
ing time is to use bound states to obtain self refocused
90� pulses, see [3,8]. For a given bandwidth (in the
summed profile), the standard self refocused pulses are
considerably longer than the half pulses we design here
and have much larger maximum amplitudes.

In [2], a formalism is presented for analyzing pulse
synthesis problems using the inverse scattering trans-
form (IST). We only require a few facts, which we
now present. Given a magnetization profile, which is a
unit 3-vector valued function,

m1ðnÞ ¼ ½m1
x ðnÞ;m1

y ðnÞ;m1
z ðnÞ�;

the IST algorithm finds a pulse envelope q (t), which,
after appropriate rephasing, produces the given profile.
The parameter n ¼ f

2
is the natural spin domain offset
frequency parameter. The pulse synthesis problem is
highly underdetermined, and the IST actually allows
one to specify an arbitrary number of auxiliary parame-
ters. For the moment, we restrict our attention to mini-
mum energy pulses, which are uniquely determined by
the magnetization profile. A detailed discussion of IST
pulse synthesis can be found in [2]. We use the results
of that paper freely.

In the inverse scattering formalism, the natural datum
for specifying the frequency response is the reflection
coefficient, r (n). If, in the natural time parametrization
provided by the inverse scattering transform, the pulse
is supported in the interval (�1, t1], then the reflection
coefficient is related to the magnetization profile by

rðnÞ ¼
ðm1

x ðnÞ þ im1
y ðnÞÞe�2int1

1þ m1
z ðnÞ

: ð2Þ

As noted above, the magnetization profile, m1 (n), pro-
duced by a single pulse is a unit vector valued function.
In applications to MR, the transverse component is usu-
ally supported in a bounded interval.

Supposing the gradient polarity is simply reversed,
Eq. (2) implies that a pulse supported in (�1, t1] re-
quires t1 units of rephasing time to achieve the specified

magnetization profile, i.e, m1 (n). This explains our re-
mark, that a pulse supported in (�1, 0] is a self refo-
cused pulse: it attains the specified magnetization
profile without any need for rephasing. Using Eq. (2),
with t1 = 0, we obtain the formula

m1
x ðnÞ þ im1

y ðnÞ ¼
2rðnÞ

1þ jrðnÞj2
: ð3Þ

To simplify, the notation we set mxy (n) = mx (n) +
imy (n). With our normalization, the transverse magneti-
zation profile m1

xy ðnÞ, produced by a single pulse, is a
complex valued function, defined on the real line, taking
values in the unit disk.

A minimum energy pulse is supported in (�1, 0] if
and only if its reflection coefficient r (n) has an analytic
extension to the upper half plane. More generally, a pulse
is supported in (�1, 0] if r (n) has a meromorphic exten-
sion to the upper half plane, with finitely poles, and these
poles of r (n) are used to define the bound states. We give
a short proof of this statement in Appendix A. With
these preliminaries we can now recast the half pulse syn-
thesis problem in terms of scattering data: given a
summed transverse magnetization profile ms

xyðnÞ, find a
pair of reflection coefficients (r1 (n), r2 (n)) such that:

1. r1 (n) and r2 (n) have analytic extensions to the upper
half plane, or meromorphic extensions with finitely
many poles.

2. For n 2 R, they satisfy the equation:

2r1ðnÞ
1þ jr1ðnÞj2

þ 2r2ð�nÞ
1þ jr2ð�nÞj2

¼ ms
xyðnÞ: ð4Þ
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We emphasize that, for the half pulse problem, the in-
put datum is a summed transverse profile ms

xyðnÞ,
which is a complex valued function defined on the
real line taking values in the disk of radius 2 centered
at 0. The disk has radius 2 because ms

xyðnÞ is the result
of summing two transverse profiles, each of which
takes values in the disk of radius 1. If jms

xyðnÞj exceeds
1 at any point, then the given transverse magnetiza-
tion can no longer be attained using a single pulse.

If r1 (n) and r2 (n) have analytic extensions, then the
corresponding minimum energy pulses q1 (t), q2 (t),
with these reflection coefficients are supported in
(�1, 0], and therefore solve the half pulse synthesis
problem. If r1 (n), r2 (n) are meromorphic with nontriv-
ial poles, then we need to use the poles of r1 (n) and
r2 (n), respectively, to define bound states, to get
potentials, supported in (�1, 0], with these reflection
coefficients.

An interesting special case arises when ms
xyðnÞ is real

valued. In this case there is, in essence, a single half pulse
that solves the problem. That is, q1 (t) can be taken to be
the pulse defined by r1 (n) (and its poles in the upper half
plane, if necessary). We then take r2 (n) = r1 (�n*)*. In
this case Eq. (4) becomes:

4Rer1ðnÞ
1þ jr1ðnÞj2

¼ ms
xyðnÞ: ð5Þ

Even when the datum, ms
xyðnÞ, is real, the solutions to

Eq. (5) are not. The phase of r1 (n) is fairly complicated,
see Figs. 4A and B, and so it is necessary to use a meth-
od for obtaining the potential that respects the phase of
the magnetization profile. In particular the usual Shin-
nar–Le Roux or SLR-approach cannot easily be ap-
plied. In the usual implementations of SLR, the pulse
is designed using the flip angle profile and the phase is
‘‘recovered,’’ see [5] or [2]. The half pulse synthesis prob-
lem is therefore a problem for which the IST approach
to pulse synthesis is necessary. An exposition of a prac-
tical algorithm for implementing the IST-approach, with
arbitrary bound states, is given in [3].
3. The solution in the real case

If ms
xyðnÞ is real valued, then the half pulse design

problem can be solved in closed form. Indeed the expli-
cit formula provides an infinite dimensional space of
solutions. These solutions have a simple formula in
terms of the orthogonal projection P+ onto L2 func-
tions with an analytic extension to the upper half
plane. This operator is defined in terms of the Fourier
transform by

Pþf ðnÞ ¼
1

2p

Z 1

0

f̂ ðtÞeitn dn ¼ 1

2
ðf þHf Þ: ð6Þ
Here H is the Hilbert transform. As H is a shift invari-
ant filter, it can be efficiently implemented using the fast
Fourier transform.

If we set

r1ðnÞ ¼
1� sðnÞ
1þ sðnÞ ; ð7Þ

then Eq. (5) becomes

1� jsðnÞj2

1þ jsðnÞj2
¼ 1

2
ms

xyðnÞ: ð8Þ

There exists a solution s (n), to Eq. (8) that has a non-
vanishing analytic extension to the upper half plane. De-
note this solution by s0 (n). Solving for |s0 (n)|, we obtain

js0ðnÞj2 ¼
2�ms

xyðnÞ
2þms

xyðnÞ
: ð9Þ

Given that s0 (n) is analytic and nonvanishing in the
upper half plane and tends to 1 as |n| tends to infinity,
we can use a knowledge of |s0 (n)| to completely deter-
mine s0 (n). This idea is already used in an essential
way in the derivation of the IST, see Eqs. (38) and
(40) in [2]. We use the projector P+ to solve for log s0
in terms of log|s0|. If we set

log s0ðnÞ ¼ ½Pþ log js0j�ðnÞ

¼ 1

2
Pþ log

2�ms
xy

2þms
xy

" #
ðnÞ; ð10Þ

then

s0ðnÞ ¼ exp
1

2
Pþ log

2�ms
xy

2þms
xy

" #
ðnÞ

" #
ð11Þ

is a nonvanishing analytic function in the upper half
plane, which satisfies Eq. (8) on the real axis. If ms

xyðnÞ
is integrable and has an integrable derivative, then
s0 (n) tends to 1 as |n| tends to infinity.

Using Eqs. (7) and (10), we can easily solve for r1 (n)
in terms of ms

xyðnÞ. This function is meromorphic in the
upper half plane, tends to zero at infinity, and satisfies
Eq. (5). If s (n) „ �1 for n in the upper half plane then
r1 (n) is analytic. This happens if, for example, ms

xyðnÞ
is nonnegative, then |s0 (n)| 6 1 on the real axis, and so
by the maximum principle, s0 (n) „ �1 in the upper half
plane.

We obtain the other solutions to Eq. (8) by multiply-
ing s0 (n) by a Blaschke product. Let f = {f1,. . ., fN} be
an arbitrary collection of points with Imfj „ 0 for all j.
The function defined by

sfðnÞ ¼ s0ðnÞ
YN
j¼1

n� fj
n� �fj

 !
ð12Þ

satisfies Eq. (8) on the real axis and tends to 1 as |n| tends
to infinity in the closed upper half plane.
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The functions s0 (n) and sf (n) are meromorphic in the
upper half plane. Using formula (7) we recover r1 (n)
from s0 (n), or sf (n). The reflection coefficient is also
meromorphic in the upper half plane. If r1 (n) has poles,
then these poles must be included as bound states when
the potential q1 (t) is reconstructed from r1 (n). This is
necessary to ensure that q1 (t) is supported in (�1, 0].
This provides a further reason why the IST approach
to pulse synthesis is needed to reconstruct the potential
from the scattering data. It is not immediately evident
which, of the infinite dimensional space of possible half
pulses, has the minimum energy.

We close this section by giving a useful application of
the Blaschke factor. Since s0 (n) is asymptotically equal

to 1, the transverse magnetization 2r1ðnÞ
1þjr1ðnÞj2

excited by

the half pulse tends to zero as |n| tends to infinity. How-
ever, the imaginary part of this function may decay very
slowly (see Fig. 4A), which is undesirable in many appli-
cations. A method for improving the rate of decay is to
choose f = {ig}, where g 2 R, is chosen so that

lim
jnj!1

jnjjsfðnÞ � 1j ¼ 0: ð13Þ

This method is illustrated in Example 3.
4. The solution with general data

If ms
xyðnÞ is not real valued, then there are many pos-

sible algorithms for obtaining approximations to
(r1 (n), r2 (n)) and thereby (q1 (t),q2 (t)). In Appendix B
we show that there is a unique low energy solution, if
ms

xyðnÞ is small enough. Here we give an algorithm that
has successfully produced pulses, even for fairly large
ms

xyðnÞ, i.e., functions with sup-norm close to 2. The
algorithm we use is described in terms of the orthogonal
projection P+, defined in Eq. (6).

The two reflection coefficients must be found simulta-
neously. We use the linear solution to initialize the
algorithm:

r01ðnÞ ¼ 1
2
Pþ½ms

xyðnÞ�; r02ðnÞ ¼ 1
2
Pþ½ms

xyð�nÞ�: ð14Þ

The iteration is given by:

rjþ1
1 ðnÞ ¼Pþ

ð1þ jrj1ðnÞj
2Þ

2
ms

xyðnÞ �
2rj2ð�nÞ

1þ jrj2ð�nÞj2

 !" #

rjþ1
2 ðnÞ ¼Pþ

ð1þ jrj2ðnÞj
2Þ

2
ms

xyð�nÞ � 2rj1ð�nÞ
1þ jrj1ð�nÞj2

 !" #
:

ð15Þ
The iterative step is repeated until the changes

Drjþ1
1 ðnÞ ¼ rjþ1

1 ðnÞ � rj1ðnÞ; Drjþ1
2 ðnÞ ¼ rjþ1

2 ðnÞ � rj2ðnÞ

become sufficiently small. It seems very likely that there is
also an infinite dimensional space of solutions whenms

xy is
complex valued, thoughwehave, as yet, noway to find the
other solutions. In the next sectionwe give an example of a
half pulse pair designed using these algorithms.
5. Examples

In this section we give several examples, using the algo-
rithms in Eqs. (10) and (15) to design pairs of half pulses.
These equations are discretized and the solutions r1, r2 are
found as finite Fourier series in w = exp(2iDn). In effect
we use a hard pulse approximation. The potentials,
q1 (t), q2 (t) are obtained from the reflection coefficients,
r1 (w), r2 (w), using a modification of an algorithm given
byYagle, see [9]. The input to this algorithm is a reflection
coefficient r, which is a rational function ofw. It automat-
ically uses all the poles of r within the unit disk to define
bound states, without the necessity to locate themor com-
pute the residues of r at these points. Each of these pulses
took considerably less than a minute to compute on a
2 GHz Linux box, using a Matlab program.

In the transverse profile plots, mx (f) is shown with a
solid line and my (f) is shown with a dot-dash line. The
pulse plots are in the rotating reference frame. If
B1ðtÞ ¼ eix0tðb1xðtÞ þ ib1yðtÞÞ then, in the plots, b1x (t) is
shown as a solid line and b1y (t) as a dot-dash line.

Example 1. Fig. 1A shows a half pulse designed using the
Fourier method to produce a summed transverse profile
equal to 2 within the passband and 0 a little outside it. In
Fig. 1B we show the summed transverse profile produced
by this pulse under ‘‘ideal’’ circumstances, i.e.,T2 = 1. In
Fig. 1C we show the summed transverse profile produced
by this pulse with T2 = 5 ms. Under ideal conditions this
pulse is not very selective and fails to achieve the
maximum summed amplitude within most of the pass-
band. Even with a short T2, the transverse profile retains
most of its amplitude and shape.

Example 2. The pulse in Fig. 2A is designed with the IST
algorithm andEq. (10) to produce the summed transverse
magnetization in-slice of 2 and essentially 0 out-of-slice.
In Fig. 2B we show the summed transverse profile pro-
duced by this pulse under ‘‘ideal’’ circumstances, i.e.,
T2 =1. In Fig. 2C we show the summed transverse pro-
file produced by this pulse with T2 = 5 ms. This pulse has
somewhat largermaximumamplitude and equal duration
to the previous example. Under ideal conditions it is very
selective and produces essentially the full amplitude in-
slice. With a short T2, the transverse profile again retains
most of its amplitude and selectivity.

Example 3. In this example we design a pulse with the
same summed profile as in the previous example, using
a Blaschke factor as described in Eq. (13). Fig. 3A shows
the pulse. In Fig. 3B we show the summed transverse
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profile produced by this pulse under ‘‘ideal’’ circum-
stances, i.e., T2 = 1. In Fig. 3C we show the summed
transverse profile produced by this pulse with
T2 = 5 ms. This pulse has somewhat larger maximum
amplitude than, and equal duration to the previous
example. Under ideal conditions it is very selective and
produces essentially the full amplitude in-slice. With a
short T2, its transverse profile is again little changed.

Finally in Fig. 4A we show the transverse profile (not
summed) produced by a single excitation using the pulse
in Fig. 2A and in Fig. 4B, that produced by a single
excitation using the pulse in Fig. 3A. Note that the
transverse profile has a very complicated phase relation,
which needs to be respected in order to solve the half
pulse synthesis problem. This is a reason why an
implementation of the inverse scattering transform is
needed to solve this type of pulse design problem. The
transverse profile for the second pulse shows a much
more rapidly decaying imaginary part.
Fig. 5. An example with a nonreal target magnetization. (A) Pulse 1. (B) Pu
(A). (D) The transverse magnetization produced by using the pulse in (B). (E)
(A and B). In these plots, the real part is shown as a solid line and the imag
Example 4. Fig. 4C shows the transverse profile pro-
duced by a minimum energy 90� pulse with the same
bandwidth and transition region as that of the pulses
in Examples 2 and 3. It has a duration of 5 ms and
requires 2.5 ms of rephasing. For this simulation we
set T2 = 5 ms. Comparing this plot to Figs. 1–3C,
we see that the transverse profile of the minimum
energy pulse suffers much greater loss of amplitude
than the summed amplitude produced by the half
pulses.

Example 5. For our final example we use a target
magnetization with nontrivial real and imaginary parts.
The target magnetization, shown in Fig. 5E, has two
passbands with the magnetizations 90� out of phase.
The pair of half pulses, found using Eq. (15), are
shown in Figs. 5A and B. They both have nontrivial
real and imaginary parts. The magnetizations produced
by each pulse separately are shown in Figs. 5C and D,
lse 2. (C) The transverse magnetization produced by using the pulse in
The summed transverse magnetization produced by using the pulses in
inary part as a dot-dash line.
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respectively. The summed transverse magnetization is
shown in Fig. 5E. This pulse is intended to demon-
strate the capabilities of our general algorithm, it is
likely far too long to be used in applications where
T2 is very short.
6. Conclusion

We have shown that the problem of half pulse design
has a natural interpretation in the inverse scattering for-
malism introduced in [8,2]. This interpretation leads to
simple and efficient algorithms for the exact solution
of the general half pulse design problem. In examples,
we have seen that, under ideal conditions, the IST de-
signed pulses achieve the specified target summed trans-
verse profile to a very high degree of precision. With a
short T2 the summed profile retains its amplitude and
general shape.

In Nielson et al. various practical difficulties with
implementing half pulses are discussed. For example,
the pulses produced by either the linear or nonlinear
theory produce considerable excitation outside the de-
sired slice. The selectivity of the pair of pulses results
from delicate cancellations between the out-of-slice
contributions from the two excitations. A variety of
phenomena, such as eddy currents, can lead to imper-
fect cancellation out-of-slice, in the sum of the mea-
sured signals. To attain a high degree of cancellation,
Nielson et al. found it necessary to measure the actual
gradient fields, with the sample in place. They then use
a VeRSE technique, to match the play out of the half
pulses to the actual time course of the gradient. As the
VeRSE technique amounts to a change in the time
parametrization in Bloch�s equations and because the
cancellation phenomenon is the result of a symmetry
in Bloch�s equation, the methods that they employ
should work equally well with half pulses designed
using the IST approach. With sufficiently good experi-
mental technique, the improvements in the designed
profiles should be reflected in the profiles obtained on
the scanner.

We have also shown that, by using Blaschke factors
with the nonlinear approach, the out-of-slice excitation
can be dramatically reduced. As the IST approach gives
an infinite dimensional space of solutions to the half
pulse synthesis problem, it may be possible to choose
the auxiliary parameters to ameliorate the problems that
arise in the actual implementation of these pulses.
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Appendix A. Self refocused pulses

If q (t) is supported in (�1, 0], then b (n) has an ana-
lytic extension to the upper half plane and therefore
r (n) = b (n)/a (n) has at least a meromorphic extension
as well. If q (t) is minimum energy, then a (n) is nonvan-
ishing in the upper half plane, and therefore r (n) is ana-
lytic in the upper half plane as well. On the other hand,
if q (t) has minimum energy, then the integrand f (t) for
the right Marchenko equation (see Eq. (56) in [2]) is
the inverse Fourier transform of r (n). If r (n) has an ana-
lytic extension to the upper half plane, then the Paley–
Wiener theorem implies that f (t) has support in the
(�1, 0]. It follows easily from Theorem 3 in [2] that
q (t) also has support in (�1, 0].

If r (n) has a meromorphic extension to the upper
half plane with finitely many poles, then, we use the
formula for the kernel of the right Marchenko equa-
tion as the inverse Fourier transform of r (n + ig) along
a line g = constant. It is again a consequence of the Pa-
ley–Wiener theorem that f (t) is supported in (�1, 0],
provided the line of integration lies above all the
poles of r. In other words, all of the poles of r in the
upper half plane are used to define the data for bound
states.
Appendix B. Half pulses with nonreal target

transverse profiles

For the general case, we use elementary functional
analysis to show that the half pulse synthesis problem
has a unique minimum energy solution, for sufficiently
small transverse magnetization profiles. We let H1 de-
note functions defined on R such that the function and
its first derivative are square integrable. We define a
norm on H1 by setting

jjf jj21 ¼
Z 1

�1
½jf ðnÞj2 þ jf 0ðnÞj2�dn:

The closed subspace of H1 consisting of functions with
an analytic extension to the upper half plane is denoted
by Hþ

1 . The Paley–Wiener theorem states that a function
in H1 belongs to Hþ

1 if and only if its Fourier transform
is supported in (�1, 0].

Formally the first derivative of the map,

Sðr1; r2Þ ¼
2r1ðnÞ

1þ jr1ðnÞj2
þ 2r2ð�nÞ
1þ jr2ð�nÞj2

; ðB:1Þ

is given by:

dSðr1; r2Þ½h1; h2� ¼ 2
h1ðnÞ � r21ðnÞh�1ðnÞ
ð1þ jr1ðnÞj2Þ2

þ 2
h2ð�nÞ � r22ð�nÞh�2ð�nÞ

ð1þ jr2ð�nÞj2Þ2
: ðB:2Þ
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The following lemma is not difficult to prove:

Lemma 1. The map S : Hþ
1 � Hþ

1 ! H 1 is bounded and
differentiable, with derivative given by Eq. (B.2).

As S is a differentiable map from a Hilbert space to a
Hilbert space, we can apply the inverse function theorem
to study its invertibility, see [1]. If we can show that
dS (0,0) is a linear isomorphism from Hþ

1 � Hþ
1 to H1,

then it would follow that the half pulse synthesis prob-
lem has a unique small energy solution for small data.
Formula Eq. (B.2) gives

dSð0; 0Þ½h1; h2�ðnÞ ¼ 2ðh1ðnÞ þ h2ð�nÞÞ: ðB:3Þ
It follows easily from Theorem 1 that dS (0,0) is an iso-
morphism. This proves the following result:

Theorem 2. If ms
xy is a function in H1 with sufficiently

small H1-norm then there is a unique pair of half pulses
with small H1-norm, (q1,q2), whose reflection coefficients,
(r1, r2), satisfy Eq. (4).

Remark 1. From our experiments it seems likely that
much more is true. Indeed one might reasonably hope
that, for any function ms

xy with finite H1-norm, and
maximum modulus less than two, there are pairs of half
pulses, which satisfy Eq. (4).
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